Are Private Variables Really Private in Python? The Truth Revealed

If you come from languages like Java, C++, or C#, you’re used to having strict access control: privateprotectedpublic. But in Python, you might be surprised to find that private variables aren’t truly private.

In this article, we’ll break down:

  • What “private” means in Python
  • What __double_underscore really does
  • How it compares to other languages
  • What Python intends — and how you should handle it
  • Code examples that clarify it all

❓ Does Python Have Private Attributes?

Short answer: No, not really.

Python does not have real access modifiers like private. Instead, it uses naming conventions and soft barriers.


🧪 Example 1: Normal Attribute (Public)

class Person:
def __init__(self):
self.name = "Alice"

p = Person()
print(p.name) # ✅ Accessible directly

There are no restrictions — Python assumes you know what you’re doing.


🔹 Example 2: _single_underscore — “Protected” by Convention

class Person:
def __init__(self):
self._age = 30 # intended for internal use

p = Person()
print(p._age) # ✅ Still accessible

This is a warning to developers:

“This is an internal implementation. Please don’t touch unless you know what you’re doing.”

It’s not enforced by Python — purely conventional.


🔒 Example 3: __double_underscore — Name Mangling

class Person:
def __init__(self):
self.__salary = 50000

p = Person()
print(p.__salary) # ❌ AttributeError
print(p._Person__salary) # ✅ Accessed using mangled name

✅ What Happened?

Python renamed __salary to _Person__salary to make accidental access harder.
This is called name mangling.

So it’s not private — just obscured.


🔧 Comparison: Python vs Java

FeatureJavaPython
privateEnforced❌ Not supported
_varNot allowed⚠️ By convention (protected)
__varN/A🔒 Name mangling only
__var__N/A⚙️ Magic methods (dunders)

🧠 Why Doesn’t Python Enforce Privacy?

Python follows a different philosophy:

“We are all consenting adults here.”

It trusts the developer to be responsible. You’re expected to follow conventions, not rely on enforced restrictions.

So rather than saying:

“You cannot access this.”

Python says:

“You shouldn’t access this — but I won’t stop you.”


✅ Best Practices in Python

🔸 Use _var for protected-like fields

self._internal_id = 42

Use _ to indicate “don’t touch this unless you must.”


🔸 Use __var when you want to avoid name clashes, not hide data

self.__config = {}

This is useful in inheritance, where subclasses might accidentally override your internal fields.


🔸 Use @property to control access (like a getter)

class Bank:
def __init__(self):
self.__balance = 1000

@property
def balance(self):
return self.__balance

You can even add a setter:

    @balance.setter
def balance(self, value):
if value < 0:
raise ValueError("Balance cannot be negative")
self.__balance = value

✅ Summary

NamingPurposeAccess Control?
varPublic❌ No
_var“Protected” by convention❌ No
__varName mangling⚠️ Yes (soft)
__var__Special dunder methods (__init__)✅ Yes (Python magic)

🏁 Final Thoughts

Python doesn’t enforce privacy like Java — and that’s by design.

  • If you’re writing a library or shared API, use _ and __ to signal intent
  • If you’re trying to protect values, use @property, validation logic, or even custom descriptors
  • And if you’re doing anything advanced — remember: name mangling is not encryption 😄

In Python, privacy is a gentleman’s agreement, not a jail cell.


[eatblvd_order_menu]

Leave a Reply

Your email address will not be published. Required fields are marked *