Sorted List vs Min-Heap: What’s Better for Top-K in Python?

When solving problems like “find the top K largest elements”, you have two common strategies:

  1. Use a sorted list to maintain the top K
  2. Use a min-heap (via Python’s heapq) to do the same

At first glance, it may seem both approaches are similar — especially since we’re just storing K elements — but their performance and behavior differ significantly.


🔍 Scenario: Maintain Top 3 Elements

Say you’re scanning a list or stream of numbers like this:

[5, 6, 7]

Now you want to insert a new number: 4

Let’s compare what happens in both approaches.


✅ Method 1: Sorted List Approach

Current list:

[5, 6, 7]

Insert 4 (maintain sort):

  1. Use binary search to find the insert position → index 0 ✅ O(log K)
  2. Insert 4 at index 0 ❌ requires shifting all elements right → O(K)

🔧 Result:

[4, 5, 6, 7]

If you’re only allowed to store 3 elements (Top K), you’d remove the smallest (now at the start) → back to [5, 6, 7]

⏱ Complexity:

  • Insert position: O(log K)
  • Actual insert (shift): O(K)
  • Total: O(K)

✅ Method 2: Min-Heap Approach

We store the smallest of the top K at the root.

Heap (min-heap) contents (internally):

[5, 6, 7]

Insert 4:

  • Compare 4 with heap[0] (which is 5)
  • Since 4 < 5, we don’t insert → discard ✅ O(1)

Or if 4 were bigger:

  • Replace the root with 4 → heapq.heappushpop() → ✅ O(log K)

🔧 Visual Example:

Heap Structure (before insert):

      5
/ \
6 7

Attempt to insert 4:

  • 4 < 5 → too small → discard

Attempt to insert 8:

  • Replace 5 → bubble 8 down → maintain heap order

🔁 Comparison Summary

FeatureSorted ListMin-Heap (heapq)
Insert position search✅ O(log K)🚫 Not needed
Insertion (actual shift)❌ O(K)✅ O(log K)
Overall insert cost❌ O(K)✅ O(log K)
Space complexity✅ O(K)✅ O(K)
Maintains sorted order✅ Yes❌ No (only top element known)
Best for…Small K, final outputLarge streams, fast updates

✅ Final Thoughts (Answering Your Original Doubt)

You might ask :

“If we already have a sorted list of K items, shouldn’t insert be fast?”

The answer is:

  • Searching where to insert is fast (O(log K) via binary search)
  • But inserting itself is costly (O(K)), because all items after the insert point must shift right in memory (Python uses arrays, not linked lists)

On the other hand, min-heaps:

  • Allow fast insertions (O(log K))
  • Only track the top K, not full sort
  • Are ideal when you don’t need full ordering — just the top results efficiently

🧪 Optional Code (Min-Heap Top K Tracker)

import heapq

class TopKHeap:
def __init__(self, k):
self.k = k
self.heap = []

def add(self, num):
if len(self.heap) < self.k:
heapq.heappush(self.heap, num)
elif num > self.heap[0]:
heapq.heappushpop(self.heap, num)

def get_top_k(self):
return sorted(self.heap, reverse=True)

✅ In Summary

Use a min-heap (heapq) when:

  • You’re processing a large stream of data
  • You need fast, efficient top-K tracking
  • You don’t need full sorting, just the top few items

Use a sorted list when:

  • K is small
  • You need the list to stay sorted
  • You don’t have frequent updates

[eatblvd_order_menu]

Leave a Reply

Your email address will not be published. Required fields are marked *